跳转至

FMT(Fast Möbius Transform) 学习笔记

小 Tips:在计算机语言中 \(\cap\) = & / and\(\cup\) = | / or

定义

定义长度为 \(2^n\) 的序列的 and 卷积 \(A = B * C\)\(A_i=\sum_{j \cap k = i}{B_j \times C_k}\)

考虑快速计算

Zeta 变换

定义长度为 \(2^n\) 的序列的 Zeta 变换

\[ \hat A_i = \sum_{j \subseteq i}{A_j} \]

即子集和

它具有一下性质:

\[ \hat B_i \times \hat C_i = \sum_{j \subseteq i} B_j \times \sum_{k \subseteq i} C_k = \sum_{p \subseteq i} \sum_{j \cap k = p} B_j \times C_k = \sum_{p \subseteq i} A_p = \hat A_i \]

相当于 FFT 中的点值表示法,用以加速卷积过程

快速变换

暴力求解 \(\hat A\) 最优时间复杂度为 \(3^n\),考虑加速

考虑 子集DP ,有一篇很好的博客1,这里大概讲解一下。

其实 \(\hat A\) 本质上是一个高维(\(n\) 维)前缀和

如果我们要求二维前缀和,显然可以通过一下代码实现:

1
2
3
4
5
6
7
8
// 1st
for(int i=1; i<=n; ++i)
    for(int j=1; j<=m; ++j)
            a[i][j]+=a[i-1][j];
// 2nd
for(int i=1; i<=n; ++i)
    for(int j=1; j<=n; ++j)
            a[i][j]+=a[i][j-1];

我们发现 1st 完成后 a[i][j] 表示的是 \(\sum_{k \le i} a_{k,j}\),即 \((i,j)\) 上方的元素和

那么 2nd 便是将 \((i,j)\) 左边操作后的 \(\sum_{k \le j} a_{i,k}\) 累加到 a[i][j] 中,即完成二维前缀和


下面拓展到三维前缀和

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
// 1st
for(int i=1; i<=n; ++i)
    for(int j=1; j<=n; ++j)
        for(int k=1; k<=n; ++k)
            a[i][j][k]+=a[i-1][j][k];
// 2nd
for(int i=1; i<=n; ++i)
    for(int j=1; j<=n; ++j)
        for(int k=1; k<=n; ++k)
            a[i][j][k]+=a[i][j-1][k];
// 3rd
for(int i=1; i<=n; ++i)
    for(int j=1; j<=n; ++j)
        for(int k=1; k<=n; ++k)
            a[i][j][k]+=a[i][j][k-1];

类似地,1st,2nd 中处理除了第 k 平面中的二维前缀和,3rd 在立体空间中把他们加起来,成为三维前缀和


回到 Zeta 变换

\[ \hat A_i = \sum_{j \subseteq i}{A_j} \]

如果我们用二进制 \((x_{n-1}x_{n-2}x_{n-3}\ ...\ x_2x_1x_0)_2\) 表示集合 \(i\),二进制 \((y_{n-1}y_{n-2}y_{n-3}\ ...\ y_2y_1y_0)_2\) 表示集合 \(j\)

那么 \(\hat A_i\) 可以被视为 \(n\) 维前缀和,即 $$ \hat A_i = \sum_{y_{n-1}\le x_{n-1},y_{n-2}\le x_{n-2}, ..., y_1\le x_1,y_0\le x_0} A_j $$

当然,下标都为 0/1

因此,我们有如下 Code:

1
2
3
4
for(int i=0; i<n; ++i)
    for(int j=0; j<(1<<n); ++j)
        if(j&(1<<i))
            a[j]+=a[j^(1<<i)];

以上 Code 的 naive 形式为:

1
2
3
4
for(int i1=0; i1<2; ++i1) for(int i2=0; i2<2; ++i2) ... for(int in=0; in<2; ++in) if(i1>0) a[i1][i2][...][in]+=a[i1-1][i2][...][in];
for(int i1=0; i1<2; ++i1) for(int i2=0; i2<2; ++i2) ... for(int in=0; in<2; ++in) if(i2>0) a[i1][i2][...][in]+=a[i1][i2-2][...][in];
...
for(int i1=0; i1<2; ++i1) for(int i2=0; i2<2; ++i2) ... for(int in=0; in<2; ++in) if(in>0) a[i1][i2][...][in]+=a[i1][i2][...][in-1];

不要质疑我代码编译不通过

因此,我们用 \(O(n2^n)\) 的时间复杂度解决了 Zeta 变换

逆变换

warning:此处不是 莫比乌斯反演

众所周知,前缀和的逆运算即为差分

我们发现,只需要先将最后一维差分,即可将序列处理为 \(n-1\) 维前缀和

1
2
3
4
for(int i1=0; i1<2; ++i1) for(int i2=0; i2<2; ++i2) ... for(int in=0; in<2; ++in) if(in>0) a[i1][i2][...][in]-=a[i1][i2][...][in-1];
...
for(int i1=0; i1<2; ++i1) for(int i2=0; i2<2; ++i2) ... for(int in=0; in<2; ++in) if(i2>0) a[i1][i2][...][in]-=a[i1][i2-2][...][in];
for(int i1=0; i1<2; ++i1) for(int i2=0; i2<2; ++i2) ... for(int in=0; in<2; ++in) if(i1>0) a[i1][i2][...][in]-=a[i1-1][i2][...][in];

但实际上因为前缀和都是无序的,因此我们直接正着做就可以啦

只需要把正变换的 += 改为 -= 就可以了

扩展

有时候,题目给的不是 \(\cap\) ,而是 \(\cup\) 怎么办?

那我们重定义 Zeta 变换 为: $$ \hat A_i = \sum_{i \supseteq j} A_j $$ 再推一下式子: $$ \hat B_i \times \hat C_i =\sum_{i\supseteq j} B_j \times \sum_{i\supseteq k} C_k =\sum_{i\supseteq j,i\supseteq k} B_j \times C_k =\sum_{i\supseteq p} \sum_{j \cup k=p} B_j \times C_k =\sum_{i\supseteq p} A_p =\hat A_i $$ 变换即超集和,高维后缀和

求法也很简单,只用将源代码中的 if(j&(1<<i)) 该为 if(!(j&(1<<i))) 即可


\(\oplus\) 怎么办?

快去学 FWT

例题

再送你一个并/交集的小口诀:下并或,上交与